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Hdtonian technique lor the construction of asymptoti~y 
flat metria II. Non-stationary gravitational field 

M P Bovyn? 
Rijksuniversiteit-Gent, Seminarie voor Wiskundige Natuurkunde, Krijgslaan 27149, 
B-9000 Gent, Belgium 

Received 4 December 1975, in final form 19 February 1976 

Abstract. In this paper a construction technique previously introduced by Bovyn is applied 
in search of new, asymptotically flat, metria. Lengthy calculations lead to the conclusion 
that there can be no new non-stationary metric, approaching the Ken metric at time-like 
infinity, for values of the metrical expansion parameter n smaller than two. The generality of 
the method is also demonstrated. 

1. Introduction 

In a previous paper ( B o y  1976, to be referred to as I), we introduced a general 
construction method, within the framework of the ADM formalism, designed to yield 
new asymptotically flat metrics directly from the integration of a system of differential 
equations, without making any supplementary assumptions, except for the boundary 
conditions. 

In I we gave the general form for the components of the 3-metric and the Lagrange 
multipliers as a fraction whose numerator and denominator contain polynomials 
constructed with non-negative integer powers of T. Formulae (1.3~-f) in I yield the 
Schwarzschild metric ,back for the lowest order in the expansion parameter for the 
polynomials. Our ansutz for the general metric components and Lagrange multipliers is 
the following: 

(1.la) 

( I . lb )  

+ . . .I sin2e/[rn+b+2 + ~ , + ~ ~ + l  Tn+b+1+(Tn+12+~2 cos2e)rn+~+.  . .] 
(l.1c) 
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As a result of I we have included the Kerr metric as a special solution (when the 
functions Si, ai,. . . , only depend on e) .  Because of this we can retain for N the Same 
functional form as in I, namely: 

N = e - ~ + A - ~  

In the previous formulae, n, II, . . . , l5 are expansion parameters which we have to 
introduce in the most general case. It follows from the construction of each metric 
component and Lagrange multiplier that if we insert it or its derivatives in the Einstein 
equations, neither n nor li will appear explicitly in the coefficient of any power of 7. 

Furthermore we can infer from the calculations (cf equations (2.15)) that in the case of 
722, there is no need for another parameter besides n. 

yz2 behaves asymptotically like r2, i.e. the total system is asymptotically endowed 
with spherical symmetry (also n = 0). Melrics corresponding to values of n larger than 
zero describe corrections to this asymptotic spherical symmetry for space-time regions 
which are close to the source. Proceeding in this way we expect that in the limit that ~t 

tends to W t y  the corresponding metric will describe correctly all physical phenomena 
even in the immediate vicinity of the source. The parameters li describe the freedom we 
still have in choosing the other metric functions. 

Before starting the actual calculations we first give a few definitions and then state 
the problem in terms of the newly defined variables. The ADM action integral is defined 
as : 

I := ( rijqZj -N%?-N,X’ dt d3x. .) (1.2) 

Here yil, vi’ and N, N, are to be regarded as independent variables. The y are defined as 
the components of the 3-metric. This tensor will be a priori diagonalized, consuming 
already three of the four coordinate conditions one can impose, i.e.: 

(1.3) 

where A symbolizes a diagonal matrix. 
The momentum tensor r i j  cannot be diagonalized a priori because the four stid 

conditions on the T follow from the variation of I with respect to N and Ni. Thesestid 
conditions are valid on an arbitrary initial space-like hypersurface and represent four 

Einstein equations. We have then for ri’: 

llyijll := A{eZw, e2’, eZp sin’d} 

(1.4) 
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@ is the super-Hamiltonian and Z' are the super-momenta, defined as: 

( 1 . 5 ~ )  

(1.5 b,c,d) 

:= y-1/2[ T ii T i j - ~ ( 7 r y ] -  yl%; 

:= -2 il 
1'. 

&e minimizes I for N and Ni by putting 

xp =O.  (1.6) 

+ij 2 N ~ - ' / ~ ( ~ i j  -$y i l~ ' , )  +N,u +N,li, (1.7) 

We can write vi' as a function of yij and its derivatives using the relation 

which we find by extremizing I with respect to the T". For the three momenta on the 
diagonal (two of which are dynamic), we find then 

sin - " 7  - PL,FN1 - P,BN2-P,+N31 ( M a )  

- L  er+h+P sin e [ i  -(N2),,-h,FN1--,$\T2-A,+N3] (1.8b) 

wP =-ep+A+psin e[p-(N3),~-p,rN1-(P,,+cot O)N2-p,,N3]. ( 1 . 8 ~ )  
2 
N 

The three kinematic momenta (see also I) are given by: 
e ~ - A + ~  e - r + A + ~  

= -- sin e(N1),, -- sin e(N2),, (1.8d) 

(Me)  

(1.8f) 

2N 2N 
e - ~ + A + p  e ~ + A - ~  

T 1 3  = -- sin 0(N3),, -- (sin 

sin S(N3),, -- (sin 8)-'(N2>,,. =23 - - -- 

2N 2N 
e r - A + ~  e ~ + A - ~  

2N 2N 

The six dynamical Einstein equations follow from the variation of I with respect to the 
7. Using (1.6) they look as follows: 
+'I =Ny1/2(yOR -R'J)-2Ny-'/2(T'maml -iTqi-'J) 

-Nl'py'/2y" + y1/2Ni1J +(T"N')II - Nij,Tm' - N]J,T~'. (1.9) 

As fourth coordinate condition we choose 

T = Trlld'll= wTi = 0 (1.10) 

on the initial hypersurface. Using equations (1.9) one can show that equation (1.10) 
hposes a condition on N by 

NR = Ni'ii. (1.11) 

Because of equation (1.10) we remark that one needs to consider only five of the 
O r i g i n a l  six dynamical Einstein equations since the equation for ?i33 for instance follows 
as a consequence from the equations for 7jl1 and 7j2'. The remaining nine Einstein 
equations have to be converted through extensive use of equations (1.lu-g) into the 
language of the metric functions. The details of this conversion are long and tedious, so 
we will omit these calculations here as they present no real difficulty. 
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The result is that the nine surviving Einstein equations contain fractional eqres. 
sions with products of different polynomials appearing both in the numerator and hae 
denominator. After multiplication by the global denominator for each equation all 
Einstein equations now become polynomial equations in ? (with lowest order zero). 
Each &efficient of a power in r (containing sums and products of various metric 
fundons and their derivatives, ai, di, . . .) can therefore be put equal to zero. In this way 
evev single Einstein equation breaks up into a number of linear and non-finea 
differentid equations for the metric functions. The n 0 n - h "  equations can be used to 
verify that the solutions of the linear differential equations satisfy the Einstein equa- 
tion~ to all orders in r. The integration of the system of linear differential equations 
discussed in the next section. 

2. Integration of the Einstein equations 

The most efficient way to proceed with the integration of the linear differential 
equations proves to be as follows: compare the equations belonging to different 
Einstein equations on the basis of their dimensional behaviour. Since we work in a 
system where c and the gravitational constant G are put equal to one, the mass M, the 
angular momentum per unit mass a and the time t are dimensionally equivalent, i.e. 
they have the dimension of a length. Checking the metric function and their derivatives 
for their dinhension in [L], we amve at table 1 for the classification of the linear 

Table 1. Classification of linear equations. 

p=- l  2.5a 2.6a 
+O 2 . l a  2 .2a 2.3a 2.4a 2.5b 2.6b 2.7a 2.8a 
+1 2. lb  2.2b 2.3b 2.4b 2 . 5 ~  2 . 6 ~  2.7b 2.8b 2% 
+2 2 . 1 ~  2 . 2 ~  2 . 3 ~  2 . 4 ~  2.5d 2.6d 2 . 7 ~  2 . 8 ~  2.9b 
+3 2. ld  2.2d 2.3d 2.4d 2.5e 2.6e 2.7d 2.8d 2 . k  
+4 2. le  2.2e 2.3e 2.4e 2.7e 2.8e 2.9d 
+5 2.9e 

differentid equations. The five linear equations symbolically written down for each of 
the Einstein equations correspond to n = li = 0. For every change An = +1 or Ali 
supplementary linear differential equations will occur which will find their place in table 
1 beneath the equations already classified. Adding terms in the numerator (but not in 
the denominator, since this would only mean a rescaling of l i )  in one or more of the 
expressions (1.1) would create additional equations at the top of table 1. Consistency 
with the rest of the equations then demands that these terms vanish. This 
generality of the ansatz (1.1) for the construction of asymptotically flat metria. 



Hamiltonian technique for asymptotically flat metrics 947 

Instead of trying to integrate one Einstein equation at a time which is a nealy 
impossible task amounting to a separate treatment of column after column in table 1, we 
wi l l  work horizontally as much as possible. This means that we attempt to integrate all 
equations of a same dimension [LIP. Next, with the solutions of these equations, we first 
simplify the equations of dimension [LIP+' and then try to integrate these, and so on. 
n e  purpose is then to proceed until all linear equations are exhausted. 

We would like to mention that, in principle, we can let 4 and n be completely 
unspecified during the integration since they only appear as indices for the functions ab 
si,.  . . . At a certain stage in the calculations however, one will have to specify these 
parameters; this includes deleting all  terms with negative indices from the equations. 

As t tends to infinity we want all metric functions with positive indices for n = Zi = 0 
to converge to zero as they would for the Ken metric. The reason for this is that we are 
looking for a non-stationary metric which would settle down, after a long time, to the 
Ken solutions, i.e. 

an+l+o; an+o as t++CO. 

However, we cannot dispose of the other metric functions like, e.g., an-l as t + +CO. The 
asymptotic nature of these particular functions will have to follow from their exact 
expression which we can only obtain after performing all the integrations. The metric 
functions, with positive indices for n = 1, can then be used as boundary condition (for 
r+  +CO) during the integration of the system with n put equal to 2, and so on. 

We will now establish that there are no non-stationary solutions to the Einstein 
equations for n = 0 and 1 but that for n 3 2 this possibility exists. We write down the 
following equations: 

&+rl+l(&+lt+l - b n + t l + l  +oin+l-Bn-1)+bn+lt+l(-~n+lt+l +&n+h-l-kn+l +&A 
(2.la) 

(2.2a) 

(2 .3~)  

(2.4a) 

(2.5~) 

(2.6a) 

(2.7~) 

(2.8a) 

Since both Sn+ll+l and un+ll+l converge to zero as t tends to infinity,'equation (2.2a) can 
easily be integrated. The result is: 

(2.10) 

The relation (2.10) can be used to simplify equation (2.1~) considerably. There remains 

(kn+i,e -Bn- l , e )2  = 0. 

(2.11) 
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where Cl represents an arbitrary constant with respect to time. With the help of (2.10) 
and (2.11) we can establish that equations (2 .3~1,  ( 2 . 4 ~ )  and ( 2 . 6 ~ )  are identimy 
satisfied. Equations (2.5a), ( 2 . 7 ~ )  and ( 2 . 8 ~ )  now read: 

&+h+l= 0; &n+h+l,e = 0; &+b+l,+ = 0 
from which we can conclude that &+h+l is a constant with respect to t, 8 and 4. since 
&+h+l has to converge to zero at time-like infinity we have 

&+h+l = 0. (2.12) 
This means that in the expression (1.  le)  for N 1  we could have deleted this term from the 
start. Consider now equation (2.lb): 

V2(En+lz+3 - qn+Iz+l- Cl) = 0. 

Integration leads to: 

%+12+3 = %+lz+l; c,=0 (2.13) 
where once again we used the asymptotic condition for t + CO on the functions. Using all 
these preliminary results we find for equation (2.2b) and (2.5b) the following ex-pres- 
sions: 

(2.26) 

(2.5b) 
We can add the derivative with respect to t of the left-hand side of equation (2.2b) to the 
expression inside the parentheses of equation (2.5b) and find: 

-2&+11 + 26n+11 + 4M&+Il+l= O 

s i n ’ t ~ & + ~ ~  - 2ti,+11 -4M&+ll+l -4&+h) = 0. 

i n + b  = 0. 

The integration of this equation leads to 

en+& = 0. (2.14) 

This makes equations (2.2b) and ( 2 3 )  equivalent. We find after integration of (2.2b): 
= Un+11 +2M&+l1+1* (2.15) 

We proceed with equations (2.3b), (2.4b) and (2.66): 

2(sin 8)-’[sin2e(4, -fin-2)3,e = o (2.36) 

24n,+- 2@n-2,+ = 0 (2.4b) 

2& - 2Pn-’ = 0. (2.6b) 

The integration of these equations leads to the following relation: 

a, - ~ n - 2 =  C3(sin e)- ’ t+~, (e,  4) (2.16) 

where C3 is an integration constant with respect to t, 8 and 4, and D3 with respect to f 
alone. Because of the condition at time-like infinity we can distinguish two cases, i.e. 
n < 2 and n 2. In the case n b 2 the term PnV2 can eventually account for the lined‘ 
divergent term in t, but for n < 2 we have to put C, and D3 equal to zero in order to fulfil 
the asymptotic condition. The parameter a describing the angular momentum Per 
mass for the Kerr metric is not altered, for n < 2, as a result of the evolution time Of 
the system. This means that the system cannot be time dependent because we expect 
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bat even for a non-stationary solution part of the mass and the angular momentum will 
be radiated away more or less in the way energy is extracted from the Ken metric (d 
Msner et a1 1973, 0 33). 

Because of the enormous amount of calculations involved we have not been able yet 
to integrate the system of linear differential equations, given by table 1, for the case 
n a 2 (or even for the case n < 2 but for different boundary conditions). 

3. Conclusion 

It has been shown that the construction technique contained in the formulae (1.1) which 
is applicable and sufficiently general (for the class of solutions which are asymptotically 
flat) yields linear diflerential relations for the metrical functions ai, 8,. . . . Using the 
Ken: metric as a boundary condition for t + OC, we retxieve no other metric but the 
asymptotic metric for values of the expansion parameter n smaller than 2 .  For n B 2 OUT 
only result is that non-stationary solutions remain possible. 

We wish to remark that, since the functional form of ihe metric is held completely 
general it is, in principle, possible to describe any other initial configuration or 
symmetry which is compatible with asymptotic flatness independently of the coordinate 
system which is used. We can for example easily imagine how a pair of gravitational 
sources would need to be described. The crucial problem would then be to find the 
proper boundary conditions for this problem. Therefore it is clear that by choosing a 
spherical coordinate system in this construction method we have only given a mould for 
the functional form of the metric. 
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